
ООО «Энергосберегающая компания «ТЭМ»

PACXOДОМЕР PCM-05.05(07) ТЭСМАРТ

ОПИСАНИЕ ПРОТОКОЛА ОБМЕНА

СОДЕРЖАНИЕ

1 ОБЩАЯ СТРУКТУРА ПРОТОКОЛА	.4
2 СТРУКТУРА ПЕРЕДАВАЕМЫХ ДАННЫХ	
3 СТАНДАРТНЫЕ КОМАНДЫ	.5
4 ЧТЕНИЕ ИНФОРМАЦИИ ОБ УСТРОЙСТВЕ	٥.

1 ОБЩАЯ СТРУКТУРА ПРОТОКОЛА

Протокол Modbus реализован в варианте Modbus-RTU. Modbus-RTU предназначен для передачи данных по последовательному асинхронному физическому интерфейсу RS-485.

Протокол предполагает одно активное (запрашивающее) устройство в линии (master), которое может обращаться к нескольким пассивным устройствам (slave), обращаясь к ним по уникальному в линии адресу. Синтаксис команд протокола позволяет адресовать 254 устройства, соединенных в линию. Инициатива проведения обмена всегда исходит от главного устройства. Ведомые устройства прослушивают линию связи. Маster подает запрос (посылка, последовательность байт) в линию и переходит в состояние прослушивания линии связи. Slave отвечает на запрос, пришедший в его адрес.

Кадры запроса и ответа по протоколу Modbus-RTU имеют фиксированный формат, приведенный в таблице 1.1.

Таблица 1.1 - Кадр посылки Modbus-RTU

Поле кадра	Длина в байтах
Адрес	1
Код команды	1
Данные	Не более 252
Контрольная сумма	2

Адрес slave - первое однобайтное поле кадра. Оно содержит адрес подчиненного устройства, к которому адресован запрос. Подчиненные устройства отвечают только на запросы, поступившие в их адрес. Ответ также начинается с адреса отвечающего устройства. Адрес может изменяться от 1 до 254.

Код команды - это следующее однобайтное поле кадра. Оно говорит подчиненному устройству, какие данные или выполнение какого действия требует от него ведущее устройство.

Данные - поле содержит информацию, необходимую подчиненному устройству для выполнения заданной мастером функции, или содержит данные, передаваемые подчиненным устройством в ответ на запрос ведущего. Длина и формат поля зависят от номера функции.

Контрольная сумма - заключительное двухбайтное поле кадра, содержащее циклическую контрольную сумму CRC-16 всех предыдущих полей кадра. Контрольная сумма завершает кадры запроса и ответа. Оригинальным описанием Modbus предусмотрены жестко установленные диапазоны кодов пользовательских команд, а также диапазоны и коды стандартных команд. Данные диапазоны представлены в таблице 1.2.

Таблица 1.2

Тип команды	Диапазон кодов команд
Стандартные команды	1 – 64; 73 – 99; 111 - 127
Пользовательские команды	65-72; 100 - 110

2 СТРУКТУРА ПЕРЕДАВАЕМЫХ ДАННЫХ

В соответствии с оригинальным описанием протокола Modbus устройства интерпретируют свои данные, используя четыре типа данных, которым выделены пространства адресов. На чтение/изменение данных каждого типа в протоколе существуют соответствующие команды. Обмен данными в PCM-05.05(07)ТЭСМАРТ осуществляется с использованием типа данных Holding Registers.

Таблица 2.1

Наименование	Формат	Адрес	Операции		
типа данных					
Holding Register	16 бит	1 - 65535	Чтение/запись		
При использовании команд записи данных рекомендуемое время отклика					
составляет не менее 2 сек.					

СТАНДАРТНЫЕ КОМАНДЫ

В примерах для каждой команды первая таблица показывает состав запроса, вторая — удачного ответа. Значения принято описывать в шестнадцатеричной системе. 16-битные значения посылаются старшим байтом вперед.

Чтение состояния Holding Registers

Запрос:

Сетевой	Код команды	Первый па-	Число пара-	CRC - код
адрес		раметр	метров	
43	03	0000	0001	8B28

Ответ:

Сетевой	Код команды	Число байт	Данные	CRC - код
адрес				
43	03	02	0000	C04B

Карта памяти представлена в виде таблицы 3.1. Таблица 3.1

Ад-	Коли-	Переменная	Формат	Комментарий		
pec	чество	'	'	'		
'	реги-					
	стров					
0	2	REG_G1	float	Расход G1		
2	2	REG_G2	float	Расход G2		
8	2	REG_T1	float	Температура Т1		
10	2	REG_T2	float	Температура Т2		
12	2	REG_Thv	float	Температура Тхв		
14	2	REG_P1	float	Давление Р1		
16	2	REG_P2	float	Давление Р2		
149		REG_ERRORS	ULONG Errors;	***		
171		REG_RESERVE	float	положительный расх		
		DPAR	Reserved_para			
			ms[10];			
181		REG_V1H	long V1;	Объем V1, целая		
				часть		
183		REG_V1L	float V1_LO;	Объем V1, дробная		
				часть		
185		REG_V2H	long V2;	Объем V2, целая		
407		DEC 1/01		часть		
187		REG_V2L	float V2_LO;	Объем V2, дробная		
400		DEC MAIL	1 144	часть		
189		REG_M1H	long M1;	Масса М1, целая		
191		REG_M1L	float M1_LO;	часть Масса М1, дробная		
191		KEG_WIL	lloat WT_LO,	1		
193		REG_M2H	long M2;	часть Масса М2, целая		
193		REG_IVIZIT	long wz,	масса мг., целая часть		
195		REG_M2L	float M2_LO;	Масса М2, дробная		
133		INLO_WZL	noat wz_co,	часть		
237		REG_TRAB	long Trab;	Время работы прибо-		
		1120_11010	long mas,	ра без ошибок, сек		
239		REG_TALL	/long Tall;	Общее время работы		
200		1120_17122	71011g raii,	прибора, сек		
241		REG_TMIN	long Tgmin	Время в ошибке		
		_	3 3	«G <min», td="" сек<=""></min»,>		
243		REG_TMAX	long Tgmax	Время в ошибке		
		_		«G>max», сек		
247		REG_TERR	long Terr;	Время в ошибке «тех.		
				неисправность», сек		
256		REG_G1_SET	float G1_set;			
258		REG_P1_SET	float P1_set;			
260		REG_T1_SET	float T1_set;			

262	REG_G2_SET	float G2_set;	
264	REG_G2_GET	float P2_set;	
266	REG_T2_SET	float T2_set;	
268	REG_T3_SET	float T3_set;	
270	REG_P3_SET	float P3_set;	
276	REG_DU1	WORD Du1;	Пиомотр Пу1
		WORD Du1;	Диаметр Ду1
277	REG_DU2		Диаметр Ду2
278	REG_SYSTEM	WORD SCH;	
283	REG_YY		
284	REG_DMMY		
285	REG_HHDW		
286	REG_SSMM		
295	REG_G1_PRC		
297	REG_G2_PRC		
299	REG_G1max	*float G1_max;	
301	REG_G2max	*float G2_max;	
303	REG_G1min	*float G1_min;	
305	REG_G2min	*float G2_min;	
307	REG_F1max	*WORD	Частотный выход
		F1_max;	
308	REG_F2max	*WORD	Частотный выход
		F2_max;	
309	REG_KV1	*float Ki1;	Выход, литров на им-
311	REG_KV2	*float Ki2;	Выход, литров на им- пульс
313	REG_GMODE	*char ModeG2;	1-частотн,2импульсн
314	REG_FOUT	*WORD	0-выключено, 1 =2Гц
	_	TestF1out;	частота прогр
315	REG_SERIALN O	* long SerialN;	
317	REG BAUDRAT	WORD	
	E _	BaudRate;	
318	REG_VERSION	WORD Version;	
321	REG GENABLE	char G2Enable;	
	_	char G1Enable;	
322	REG_TENABLE	char T2Enable;	
		char T1Enable;	
323	REG_PENABLE	char P2Enable;	
	_	char P1Enable;	
374	REG_PCFG	WORD p_cfg;	H =мах ток, мА. L =міп ток, мА. def 0х1400 (20 00)
375	REG_PMAX	UCHAR Pmax[2];	16 =1.6Мп
383	REG_RTCFG	short cfg_rt;	bit0=0 TCΠ 1.3910; bit0=1 TCΠ 1.3850 bit1=0 500 Om bit1=100

			Om
415	REG_P1DOG	float P1dogov;	
417	REG_P2DOG	float P2dogov;	
419	REG_T1DOG	float T1dogov;	
421	REG_T2DOG	float T2dogov;	
423	REG_T3DOG	float T2dogov;	

3 ЧТЕНИЕ ИНФОРМАЦИИ ОБ УСТРОЙСТВЕ

Запрос:

Сетевой	Код команды	CRC - код
адрес		
43	11	F08C

Ответ:

Сетевой	Код	коман-	Число байт	Данные	(нуль-	CRC - код
адрес	ды			терминир	ованная	
				строка)		
43	11		000A	10 байт		XXXX

Адрес предприятия-изготовителя расходомера PCM-05.05(07)ТЭСМАРТ:

ООО НПФ "Энергосберегающая компания "ТЭМ" Российская Федерация 111020, г.Москва, ул.Сторожевая, д.4, стр.3

тттого, г.москва, ул.сторожевая, д.4, стр.з тел.: (495) 234-30-85, 234-30-86,

234-30-87, 730-57-12, 980-25-16 e-mail: ekotem@tem-pribor.com web: http://www.tem-pribor.com